Topological Aspects of Regular Languages
نویسنده
چکیده
We establish a number of new results (and rederive some old results) concerning regular languages, using essentially topological methods. Our development is based on the duality (established by Stone) between Boolean algebras and certain topological spaces (which are now called \Stone spaces"). (This duality does not seem to have been recognized in the literature on regular languages, even though it is well known that the regular languages over a xed alphabet form a Boolean algebra and that the \implicit op-erations" with a xed number of operands form a Stone space!) By exploiting this duality, we are able to obtain a much more accessible account of the Galois correspondence between varieties of regular languages (in the sense of Eilenberg) and certain sets of \implicit iden-tities". The new results include an analogous Galois correspondence for a generalization of varieties, and an explicit characterization by means of closure conditions of the sets of implicit identities involved in these correspondences.
منابع مشابه
TOPOLOGICAL CHARACTERIZATION FOR FUZZY REGULAR LANGUAGES
We present a topological characterization for fuzzy regular languages: we show that there is a bijective correspondence between fuzzy regular languages and the set of all clopen fuzzy subsets with finite image in the induced fuzzy topological space of Stone space (Profinite space), and then we give a representation of closed fuzzy subsets in the induced fuzzy topological space via fuzzy regular...
متن کاملDeterministic Fuzzy Automaton on Subclasses of Fuzzy Regular ω-Languages
In formal language theory, we are mainly interested in the natural language computational aspects of ω-languages. Therefore in this respect it is convenient to consider fuzzy ω-languages. In this paper, we introduce two subclasses of fuzzy regular ω-languages called fuzzy n-local ω-languages and Buchi fuzzy n-local ω-languages, and give some closure properties for those subclasses. We define a ...
متن کاملTopological Complexity of omega-Powers: Extended Abstract
The operation V → V ω is a fundamental operation over finitary languages leading to ω-languages. It produces ω-powers, i.e. ω-languages in the form V , where V is a finitary language. This operation appears in the characterization of the class REGω of ω-regular languages (respectively, of the class CFω of context free ω-languages) as the ω-Kleene closure of the family REG of regular finitary la...
متن کاملOn the Hausdorff measure of regular ω-languages in Cantor space
This paper deals with the calculation of the Hausdorff measure of regular ω-languages, that is, subsets of the Cantor space definable by finite automata. Using methods for decomposing regular ω-languages into disjoint unions of parts of simple structure we derive two sufficient conditions under which ω-languages with a closure definable by a finite automaton have the same Hausdorff measure as t...
متن کاملThe Urysohn, completely Hausdorff and completely regular axioms in $L$-fuzzy topological spaces
In this paper, the Urysohn, completely Hausdorff and completely regular axioms in $L$-topological spaces are generalized to $L$-fuzzy topological spaces. Each $L$-fuzzy topological space can be regarded to be Urysohn, completely Hausdorff and completely regular tosome degree. Some properties of them are investigated. The relations among them and $T_2$ in $L$-fuzzy topological spaces are discussed.
متن کامل